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Abstract: Patients who have Alzheimer’s disease (AD) pass through several irreversible stages, which
ultimately result in the patient’s death. It is crucial to understand and detect AD at an early stage to
slow down its progression due to the non-curable nature of the disease. Diagnostic techniques are
primarily based on magnetic resonance imaging (MRI) and expensive high-dimensional 3D imaging
data. Classic methods can hardly discriminate among the almost similar pixels of the brain patterns
of various age groups. The recent deep learning-based methods can contribute to the detection of the
various stages of AD but require large-scale datasets and face several challenges while using the 3D
volumes directly. The extant deep learning-based work is mainly focused on binary classification,
but it is challenging to detect multiple stages with these methods. In this work, we propose a deep
learning-based multiclass classification method to distinguish amongst various stages for the early
diagnosis of Alzheimer’s. The proposed method significantly handles data shortage challenges by
augmentation and manages to classify the 2D images obtained after the efficient pre-processing of
the publicly available Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Our method
achieves an accuracy of 98.9% with an F1 score of 96.3. Extensive experiments are performed, and
overall results demonstrate that the proposed method outperforms the state-of-the-art methods in
terms of overall performance.

Keywords: Alzheimer’s disease; multiclass classification; deep learning

1. Introduction

The causes of Alzheimer’s disease and related dementias result in several neurological
disorders. These disorders affect a significant population of the world. AD and associated
dementias also affect the functionalities of the brain and cause problems of memory loss
depending upon the degenerative changes in the brain. The underlying causes for these
changes are unknown and limit the cognitive capabilities of the brain. The cognitive de-
cline evolves rapidly with the passage of time and results in the progression of AD [1,2].
The marked increase in AD heavily affects the health care system due to the irreversible
and incurable nature of this fatal disease. AD can cause more than only a loss of memory
or cognitive ability, and in the latter stages of the disease, the patient may have difficulties
in walking and eating, which ultimately cause death. Patients suffering from various de-
mentias are subjected to brain image testing to understand the loss of brain cells associated
with the AD [3].
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The progression of AD is categorized into various stages ranging from normal control
(NC) to early mild cognitive impairment (EMCI) and late mild cognitive impairment
(LMCI). It is a complicated task to determine the normal brain cells with the MRI scans and
distinguish among various stages of Alzheimer’s [4,5].

Current high-dimensional diagnostic techniques generate 3D MRI images with thou-
sands of voxels in a single image. The direct use of these images in the convolutional neural
network raises the challenges of computational complexity and data management [6].
One of the major challenges in the target domain is the unavailability of the large-scale
balanced dataset, whereas the deep learning-based framework is data-hungry and is heav-
ily dependent on the large-scale input training data [7]. It can be observed in Figure 1,
where the working principle for capturing MRI images is shown, that skull stripping and
slice extraction are the main issues while feeding the data samples to the neural network.
In the absence of large-scale datasets, learning distinctive features in brain images with
similar pixel intensities is challenging for multi-scale classification. The discriminative
learning of the existing binary classification methods are hardly applicable for the multi-
level classification; therefore, new methods are imperative to handle these challenges [8].
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Figure 1. The workflow of the proposed architecture. MRI scans are pre-processed with data cleaning
operations for the train-test split to feed in the network for multiclass classification.

The capacities of the traditional methods are limited and might be prone to several
artifacts due to the similar brain pattern and pixel intensity of the images. The recent
advancements in machine learning and deep learning provide a unique way to distinguish
such brain scans. The convolutional neural networks (CNNs) can automatically detect
and distinguish among the various pattern and play a vital role in computer vision and
medical image analysis [9,10]. Thus, deep learning approaches contribute to predicting the
above-mentioned stages of AD. The authors of [11] suggested a pairwise similarity analysis
for each modality based on the multimodal framework by using non-linear graph fusion
for distinct modalities for classification. Some methods used support vector machine-based
(SVM) classifiers with a mixed kernel approach [12] for the multimodal classification of
AD and mild cognitive impairment. Some methods also used the combination of MRI
biomarkers for volumetric measurement, hippocampal shape, and texture following the
multiclass classification [13]. The recent methods proposed in the literature are becoming
very popular for identifying and detecting Alzheimer’s disease. By using these frameworks,
researchers have recently conducted a plethora of experiments on the early identification of
Alzheimer’s disease using machine learning and deep learning technologies. Consequently,
computer-assisted methods have been proposed for detecting Alzheimer’s disease, particu-
larly in individuals with severe dementia [14]. The computer-assisted smart system can
significantly improve the detection without the involvement of the neuro-physicians [15].

The fundamental problem of image classification is based on the network’s training
on the labelled data. Next, the network is asked to predict the novel test sample of various
categories for the accuracy of predictions. The classification problem is further categorized
as binary and multiclass classification [16]. This work proposes a practical multiclass
classification network for the primitive diagnosis of Alzheimer’s disease (PMCAD-Net).
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The workflow of the proposed framework is shown in Figure 2. It demonstrates the
whole pipeline ranging from the collection principle of capturing the MRI images with
intermediate processing stages to multiclass classification. The proposed method is capable
of handling the challenges of data shortages, as we apply a data augmentation strategy to
resolve the challenges. The 3D MRI images obtained from the ADNI data repository are pre-
processed and converted into 2D images. Data cleaning operations are performed, including
skull striping normalization, registration, and segmentation. The proposed multiclass
classification network avoids the negative transfer learning challenges faced by the previous
methods and gets trained from scratch. It is important to note that the dataset in the image
classification tasks are typically very large, whereas it is a complicated task to obtain a
sufficiently large-scale dataset in the target domain. The data augmentations improve
the data diversity. The operation of random cropping, rescaling, flipping and brightness
changes are employed to obtain sufficiently large-scale generalized data as shown in the
first part of Figure 2. These operations improve the learning capabilities of the network
shown in the same figure for key aspects of the input data classes. Extensive experiments
are conducted for the performance evaluation of the proposed network. The overall
comparison demonstrates that our method outperformed the state-of-the-art approaches.
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Figure 2. Framework of the proposed framework, with several pre-processing steps, and detailed
architecture of the practical multiclass classification network for the diagnosis of Alzheimer’s disease
(PMCAD-Net).
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This work focus on multiclass classification, where we also resolve the challenges
of the data shortage. There are several problems, including perspective fluctuation, size,
scale, class, and data variation [17]. The extant methods in the literature rely on the pre-
trained models and suffer several problems, including computational complexity and
layer freezing.

2. Related Work

Alzheimer’s disease is one of the most common kinds of neurological dementia, re-
sulting in various memory-related neurological disorders. According to the 2015 World
Alzheimer’s Report, around 50 million people worldwide have dementia, with Alzheimer’s
disease accounting for 70–80% of cases [18]. Alzheimer’s disease will impact 131.5 mil-
lion people globally by the year 2050 according to projections [19]. The number of AD
patients is increasing day by day, and it is one of the primary causes of death among
older adults. The extant methods for the detection of the AD are heavily dependent upon
neurological scans and high-dimensional data, including several imaging modalities such
as MRI, functional MRI (fMRI), positron emission tomography (PET), amyloid-PET, and dif-
fusion tensor imaging. However, due to nuance in patterns, it is still very challenging
to distinguish between the patterns with radiological reading. Thus, it challenging to
diagnose AD at an early stage. Recently, several methods have been proposed for image
enhancement [20–22] based on machine learning, deep learning and few shot learning [23].
These feature extraction- and classification-based approaches [24,25] are commonly used to
design predictive models for intelligent and expert system-based applications [9,26].

Based on MRI, a multi-modal framework is proposed to extract neurological features
with a consistent metric constraint for the classification of various dementias [27]. A deep
Siamese convolution neural network (SCNN) for the multiclass classification of AD is
proposed in [28] to classify various stages of the disease. A natural image-based network
to represent neuroimaging data (NIBR-Net) is a significant approach in the target domain,
based on sparse autoencoder [29], where the network learns from a set of bases from natu-
ral images with the help of convolution to extract features from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset. Another deep sparse multi-task learning method,
along with a feature-adaptive weighting scheme for feature selection in AD (DSMAD-Net),
is proposed in [30]. It selects the useful features in a single hierarchy and iteratively filters
out undesired features hierarchically. It also uses regression coefficients as context informa-
tion and reflects the complex distributional characteristics in each class. In a similar fashion,
a deep learning-based 4-way multiclass classifier (DLMCC-Net) is proposed in [31]. This
framework follows some extant frameworks such as Google-net architecture [32] for the
multiclass classification of various stages of the disease. A network-based transfer learning
approach for the early diagnosis of AD (TLEDA-Net) is proposed in [33], and another
Alzheimer’s disease classification using transfer learning (ADTL-Net) is proposed in [34].
At the same time, the class imbalance issue is handled in [35] with a DEMNET by using the
pre-processed Kaggle dataset. Another convolutional neural network-based Alzheimer’s
disease classification from MRI brain data (CNN-AD) is proposed in [7].

The earlier techniques for multiclass classification were developed in the target do-
main with a substantial gradient flow strategy to improve the performance [36]. Using
three-dimensional image features, a Sobolev gradient-based optimization approach was
proposed for the accurate diagnosis of AD following a 3D convolutional network (SGO-
3D) [37]. The authors of [38] proposed a neuroimaging study based on a 3D convolutional
neural network for predicting Alzheimer’s disease (3D-CNN-PAD). Another multiclass clas-
sification method in [39] employed CNN architecture following a transfer learning-based
framework for the AD. The authors of [40] developed a 3D deeply supervised adaptable
convolutional neural network (CNN-3D) to predict AD. This framework can work without
the skull striping, such that the CNN-3D can learn the generic features capturing AD bio-
markers. The transfer learning approach requires the complex optimization and fine-tuning
process, which raises the complexity of multiclass classification. It can be seen in Figure 3,
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where the overview of the 3D images illustrates the capturing strategy with the 3D views.
On the other hand, the 3D subjects without skull stripping have several challenges besides
computational complexity.

a
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Sagittal 

Axial Coronal 

Sagittal 

Figure 3. Overview of the capturing process. (a) The scans, (b) pre-processed 3D images of axial,
sagittal, and coronal views, and (c) processed axial, sagittal, and coronal views.

Classification among multiple classes with overlapping features and similar pixel
intensity is challenging. The proposed network can handle the challenges of multiclass
classification and overcome the aforementioned data shortage problems. We perform sev-
eral experiments and tune hyperparameters to obtain optimal accuracy. The experimental
results demonstrate the superiority of the proposed method.

3. The Proposed Methodology

In this work, we proposed an effective and practical multiclass classification network
for the primitive diagnosis of Alzheimer’s disease. Input data samples (i.e., 3D MRI
scans) are pre-processed via statistical parametric mapping software (SPM12), where the
respective operations (i.e., skull striping, registration, normalization, and segmentation)
are applied to the input images to extract the useful 2D image slices after the segmentation
of the MRI scans as shown in Figure 1. The challenges of the data shortage are handled
with the help of the data augmentation technique. The input data samples are fed into
a lightweight yet effective PMCAD-Net. The architecture of the network is shown in
Figure 2, which is designed while considering the target problem of classifying multiple
classes in the absence of large-scale data samples. The proposed network is suitable for the
user-specific multiple classes available for classification based on the optimal layering and
loss adjustments of our PMCAD-Net.

3.1. The Proposed Practical Multiclass Classification Network for Alzheimer’s Disease

In this section, we explain the framework of the practical multiclass classification
network to classify various stages of Alzheimer’s disease based on the MRI data. A com-
prehensive pre-processing pipeline was designed to extract the 2D images from the 3D
MRI volumes for the proposed network to detect AD at the earliest possible stage (pre-
dementia). Because of the complexity of the pattern, it is difficult to discriminate between
the patterns with quantitative analysis and even radiological scans at the early stages of
AD. To detect changes in the biomarkers, the pre-processed data (i.e., 2D slices extracted
from the MRI volumes) were fed to the network. The network learned to classify changes
in the information to distinguish EMCI, LMCI, NC, and AD. The proposed learning-based
framework limits the complexities of diagnosing and monitoring disease at an early stage.
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Convolutional layers extract the features and initialize the process in deep learning-
based frameworks. The images in the data were multiplied with the convolutional kernel
following the window. The formula for the height and width of the convolution output
after the convolution filter is expressed below.

Co =
Ih − Rh + 2P

S
+ 1 (1)

Co =
Iw − Rw + 2P

S
+ 1 (2)

where Ih, and Iw, show the image height and width, with Rh and Rh representing the kernel
height and width along with filter size with the padding P and stride S. The proposed
convolutional neural network takes the pre-processed data with a size of 224, beside a
kernel size of 3, stride of 1, and padding of 1. After that, we applied batch normalization
to normalize the data. To bring non-linearity, a rectified linear unit (ReLU) was applied,
and next to it, a max-pooling was applied with a kernel size of 2 to adjust the output
shape. It reduced the height and width of the convolutional output following a factor
of 2. The shape of the convolutional layer output was next adjusted with a stack of
convolutional layers and a ReLU layer (3× 3, Conv+ReLU). Finally, a fully connected layer
was applied with the input features following the convolutional layer output. It resulted
in the general output features following the output class. This output, when fed to the
fully connected layer, reshaped the desired matrix, providing the final output. The output
classes in PMCAD-Net were 4 when we utilized the Adam optimizer and backpropagation
in the proposed framework. The learning rate was 0.0001 for 100 epochs in the presence
of categorical cross-entropy loss. It is critical to improve the model’s performance in
terms of accuracy. The performance and accuracy of the model are improved by the loss
function, which also depicts the model’s deviation from the correct predictions. In general
practice, logistic regression following linear classification algorithms and convolutional
neural networks are utilized for classification problems. These tasks involve the prediction
of one or more input variables with class labels for the classification models. Where binary
class classification has only two labels, multiclass classification has more than two labels.
Thus, the loss function also varies from binary class to multiclass problems.

The proposed PMCAD-Net can predict more than two class labels for a given pre-
processed ADNI data sample. Thus, we utilized the categorical cross-entropy loss function
for the available classes, including NC, EMCI, LMCI, and AD. The cross-entropy for this
data can be categorically described by assigning the probability values as variables. In
our model, we modified model weights during training by utilizing the categorical cross-
entropy loss LCrE, with pi probabilities for ith labels with truth values ti in the range of [0,
1], for the N number of classes.

LCrE =
n

∑
N=1

n(size)

∑
i=1

tilog(pi) (3)

The goal was to reduce the loss as much as possible; the less the loss, the better the
model. In each case, the cross-entropy for the i number of classes was estimated for the
dementia’s di, where i = 1....4 in this case. The probability of the output y for each class can
be estimated for the dementia, where the cross-entropy for each category NC, EMCI, LMCI
and AD is CENC,CEEMCI , CELMCI , and CEAD, respectively.

3.2. Data Pre-Processing for the Proposed Network

MRI technology has revolutionized the detection and diagnosis of neurological dis-
eases, and researchers are continuously improving and refining MRI technology. The ad-
vantages are multi-fold, including the improved view of the tissues and non-ionizing
radiation. However, deficiencies in the uniform intensity scale of the image make it dif-
ficult to visualize and evaluate the information. Moreover, the artifacts arising due to
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mechanical deficiencies, motion, scanner-based changes, and capturing inefficiencies must
be considered before processing these images. MRI scans face several artefacts during the
capturing process due to their capturing inefficiencies (i.e., wrong lens, slit position, etc.)
or device limitations. These limitations contribute to the loss of the necessary information
in the scans. It ultimately limits the performance of the image processing and detection
frameworks [41].

Therefore, pre-processing techniques are generally used to avoid deterioration due
to enhancement in the contrast and pixel intensity. We also propose performing the
prepossessing operations on the input data available for training and testing the proposed
PMCAD-Net. MRI images of the brain are available as Nifti format volumes. These volumes
consist of multiple slices captured during the scanning process as shown in Figure 3a.
In this Figure, (b) shows the 3D views and (c) shows the axial, sagittal, and coronal views,
respectively. As mentioned earlier, the direct use of this 3D volume results in several
complications. In general, the physical spacing is considered a consistent parameter for the
detection and segmentation tasks. The maintenance of the same resolution is the primary
and desirable feature to avoid the center-specific findings. The usual image interpolation
along the x-axis, y-axis, and z-axis is based on the frequent physical spacing requirement or
number of voxels [42]. Thus, it is important to consider the appropriate, consistent sampling
steps because non-uniformity can affect registration and resolution during subsequent
processing. Image registration interprets the spatial changes with the reference image and
plays a crucial role in medical image processing. Image registration in the target domain
can be illustrated as slice-level registration generally performed to handle the capturing
motion artifacts. It might give rise to several complications, including random noises and
image interpolation [43]. However, it is out of the scope of this work. In our method, we
aligned the input images of our training dataset for ease of learning for the associated
classification task. Although the proposed PMCAD-Net is robust enough to learn the
task without the pre-process registration step, by facilitating the training and limiting the
number of false positives, we included registration for our dataset. A pre-processing step
is required to convert these images into 2D images. To interpret the useable information
from the available volumes, several operations are performed on the MRI scans, including
skull stripping, segmentation, and spatial normalization by using SPM12 software. We
segment the brain data into gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF). It is important to note that the target problem focuses on the early detection of AD
and associated dementia, where we consider the GM to describe the early changes in AD.
Considering the nature of the target problem, we extracted the information through brain
data and regularized it at the rate of 0.0001. The data samples were extracted with the
preliminary shape of 256× 240. These images were resized to a size of 224 × 224 to design
the dataset for the proposed PMCAD-Net.

4. Dataset, Experiments and Discussions
4.1. Dataset

In this work, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [44] is
utilized. ADNI brings together experts and study data to help characterize Alzheimer’s
disease progression (ADP). MRI and PET imaging, genetics, cognitive tests, CSF, and blood
bio-markers are all used by ADNI researchers to gather, validate, and use data as disease
predictors. ADNI includes Alzheimer’s disease patients, mild cognitive impairment indi-
viduals, and older controls, as well as research tools and data from the North American
ADNI project. The information of the datasets are present in Table 1. Subjects in this dataset
are scanned with respect to different durations of time and visits. Each of the scans in
this study is considered a different subject. The overall dataset is divided into 70% as the
training dataset, 20% as testing data, and 10% as the validation dataset. In this work, we
are handling the complex challenges of multiclass classification for a limited amount of
available data. An imbalanced dataset balanced with the augmentation technique is made
suitable for the optimal performance of the PMCAD-Net. Multiple categories are available
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in the present case, ranging from normal controls (NC) to mild cognitive impairment (MCI)
and AD. In comparison, MCI can be classified as early mild cognitive impairment (EMCI)
and late mild cognitive impairment (LMCI). It is important to note that the collection of
large-scale datasets for MRI imaging is one of the major challenges. A dataset of various
patients, including 75 AD, 75 EMCI, and 70 LMCI patients, and 80 NC patients, was ob-
tained from the ADNI database. These images were pre-processed, and augmentation was
applied to obtain a uniform and equivalent number of images for multiclass classification.
It facilitates handling the major challenge of the early detection of AD.

Table 1. Sample size of the dataset utilized for training and testing the network.

Type Subjects Age MMSE

NC 80 73 ± 8.5 26.5 ± 1.4
EMCI 75 74 ± 7.7 29.5 ± 1.2
LMCI 70 72 ± 7.9 28.5 ± 1.6
AD 75 75 ± 9.5 24.5 ± 1.9

4.2. Experimental Setting

The proposed PMCAD-Net was trained from scratch using the Pytorch framework,
Adam optimizer, and backpropagation at a learning rate of 0.0001. The categorical cross
entropy loss function was utilized for the optimization of the multiclass classification in the
proposed network. The network gets regularized by utilizing only available input samples
for training. The network becomes capable of predicting the input data’s multiple classes.
The overall comparison with the state-of-the-art approaches demonstrated that our method
is more practical and suitable in the target domain. We utilized a PC core i7, 6700 K CPU@4
GHZ 32 GB RAM, NVIDIA 2080 Ti GPU to perform the experiments. The comparison
with competitor approaches demonstrated that the PMCAD-Net outperformed the state-of-
the-art approaches. The preliminary implementation guidelines and data pre-processing
strategies are available at our GitHub (https://www.github.com/imrizvankhan/PMCAD-
Net ) repository.

4.3. Experimental Evaluations and Discussions

The proposed PMCAD-Net utilizes a considerably fair amount of available datasets
for training. The training proceeded for 100 epochs, with a batch size of 32 and a learning
rate of 0.0001. In order to evaluate the efficiency of the proposed framework, we compared
PMCAD-Net with several state-of-the-art approaches. The comparison was based on the
measurement of the F1-score, specificity (Sp), sensitivity (Se), accuracy (Ac) and precision
(Pr) value predictions. These metrics are based on the measures of true positives (TP), true
negatives (TN), false positives (FP), and false-negatives (FN) [45].

4.3.1. Positive Predictive Value

The positive predictive value is called the precision and shows the portion of real
positive cases.

Pr =
TP

TP + FP
(4)

4.3.2. Sensitivity

Sensitivity is the recall value that shows the actual positive and the correctly predicted
portion of values. This metric reflects correctly anticipated cases and depicts the coverage
of real positive cases, also termed as the true positive rate (TPR).

Se =
TP

TP + FN
(5)

https://www.github.com/imrizvankhan/PMCAD-Net
https://www.github.com/imrizvankhan/PMCAD-Net
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4.3.3. Specificity

Specificity is associated with the likelihood of the negative test rate in the absence of
the condition and is considered a true negative rate.

Sp =
TN

TN + FP
(6)

4.3.4. Accuracy

The classification accuracy is a statistical measurement that evaluates the performance
of a classification model by dividing the number of correct predictions by the total number
of predictions.

Ac =
TP + TN

TP + FN + TN + FP
(7)

4.3.5. F1 Measurement

The F-Metric is a method for combining accuracy and recall into a single measure that
encompasses both and is widely utilized in classification tasks.

F1−Measure =
TP

TP + 1
2 (FP + FN)

(8)

The evaluation results for the classification are shown in Table 2. In this table, we
provide the results with a 15% dataset of train-test split. We generalized the compari-
son and selected several state-of-the-art approaches for comparison, including a CNN-
3D model [40], 3D-CNN-PAD [38], NIBR-Net [29], DSMAD-Net [30], DLMCC-Net [31],
SCNN [28], and TLEDA-Net [33]. The comparison with all of these methods is shown in
Table 3. The comparison was based on multiple modalities, where the distinction of each of
the approaches is also shown beside the type of dataset. The comparison in this Table is
shown in terms of accuracy, where the proposed method outperformed the state-of-the-art
methods. Next, we extended the canvas of experiments and included several other methods
and metrics to evaluate the proposed approach. The competitor methods include DEM-
Net [35], CNN-AD (VGG-16) [7], and ADTL-Net [34]. The comparison with these methods
was based on the F1-score, accuracy, sensitivity, and positive predictive value. The results
are shown in Table 4 with a 20% & 80% test and train split, respectively. The compari-
son of the MRI modality on various datasets demonstrates the overall recall, precision,
and prediction score, where our method outperformed the competitor approaches. We
also present the graphical representation for the overall sensitivity, accuracy, specificity,
and precision in Figure 4. The plots demonstrate the visual analysis for the four classes (i.e.,
NC, EMCI, LMCI, and AD.) described as four groups (i.e., Group1–Group4). As shown
in Figure 4 group 1, group 2, group 3, and group 4 represent the sensitivity, accuracy,
specificity, and precision, respectively, for each of the four classes (i.e., NC, EMCI, LMCI,
and AD) along-with the average value for these four parameters and classes. The graphical
representation is based on the overall performance of the PMCAD-Net, as shown in Table 2.
The behavior of these plots is illustrated explicitly in Table 5, where various features of
the graphs illustrate the overall performance of the proposed network. The comparison
illustrates that our method outperforms several states of the art approaches.
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Figure 4. The graphical analysis of the performance of the proposed network. Box plots are shown
for the sensitivity, accuracy, specificity and precision for all the four groups (i.e., Group 1–4); each
group is comprised of 4 classes (i.e., NC, EMCI, LMCI, and AD). The average is also shown for all
groups (i.e., Group 1–4).

Table 2. The comparison of the performance in terms of overall accuracy of the PMCAD-Net on
various classes, including normal controls (NC), early mild cognitive impairment (EMCI), late mild
cognitive impairment (LMCI), and Alzheimer’s disease (AD).

Classes Sensitivity Accuracy Specificity Precision Overall Average

NC 99.3 98.3 99.5 99.5 99.15
EMCI 99.4 99.6 99.1 99.2 99.32
LMCI 98.7 99.4 99.8 99.6 99.37
AD 99.5 98.3 99.7 99.5 99.25
Average per group
(Proposed Work) 99.2 98.9 99.5 99.4 99.27

Table 3. Comparison of the accuracy of the various state-of-the-art approaches with the proposed
work.

Authors Methods Modalities Distinction Data Accuracy

Hosseni et al. [40] CNN-3D MRI NC, MCI, AD ADNI 94.8
Ayan et al. [38] 3D-CNN-PAD MRI NC, MCI, AD ADNI 85.3
Gupta et al. [29] NIBR-Net MRI NC, MCI, AD ADNI 78.2
Suk et al. [30] DSMAD-Net MRI+PET NC, MCI, AD ADNI 62.9

Farooq et al. [31] DLMCC-Net MRI AD, MCI, LMCI, NC
4-way classification

ADNI 98.6

Mehmood et al. [28] SCNN MRI Stages of Dementia
4 way classification

OASIS 99.05

Atif et al. [33] TLEDA-Net MRI AD, MCI, LMCI, NC
2 way classification

ADNI 83.64

Proposed Work PMCAD-Net (This
Work) MRI AD, MCI, LMCI, NC

4 way classification
ADNI 99.25
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Table 4. Comparison of the proposed work with various state-of-the-art approaches in terms of
evaluation metrics.

Authors Methods Modalities Distinction Dataset F1
Measure Accuracy Sensitivity

Recall

Positive
Prediction
Precision

Murugun et al. [35] DEMNET MRI AD, MCI,
LMCI, NC Kaggle 95.2 95.2 95 95.2

Jian et al. [7] CNN-AD
(VGG-16) MRI AD, CN, MCI ADNI 95 95.13 96 96.3

Acharya et al. [34] ADTL-Net MRI AD, MCI,
LMCI, NC Kaggle 94.7 95.7 92.3 91.9

Proposed Work PMCAD-Net
(This work) MRI AD, MCI,

LMCI, NC ADNI 96.34 99.2 96.3 96.4

Table 5. The parametric representation for the understanding of the boxplots and overall behaviour
of the network.

Groups N Min Q1 Median Q3 Max Mean Excess Kurtosis Skewness Shape Skewness

Group 1 (Sensitivity) 4 98.7 99 99.35 99.45 99.5 99.225 −1.696387 Potentially symmetrical
(pval = 0.094) 3.01436

Group 2 (Accuracy) 4 98.3 98.3 98.85 99.5 99.6 98.9 −5.593263 Potentially symmetrical
(pval = 0.944) 0.070691

Group 3 (Specificity) 4 99.1 99.3 99.6 99.75 99.8 99.525 0.757656 Potentially symmetrical
(pval = 0.262) 0.757656

Group 4 (Precision) 4 99.2 99.35 99.5 99.55 99.6 99.45 2.888889 Potentially symmetrical
(pval=0.129) −1.539601

4.4. Discussion

The readily available binary classification approaches are hardly suitable for multiple
classes and require additional resources and effort. On the other hand, the extant work on
multiple-class classification requires a large-scale dataset. Some approaches such as the
transfer learning-based methods, DLMCC-Net [31] and TLEDA-Net [33], can somehow
resolve the problems, but the layer adjustment challenges and the dataset for pretext tasks
and the dataset for the downstream may result in domain mismatch. The pre-trained
models may converge, but they will fall in a local minimum. Therefore, the performance
in these cases will not be better than training from scratch. The challenges are more
comprehensive than transfer learning when it comes to training the network from scratch.

The proposed PMCAD-Net also provides a solution for 4-way classification for de-
tecting and diagnosing various stages of Alzheimer’s disease. The comparison to other
competing techniques demonstrates that our model is critical in accurately diagnosing
AD, EMCI, LMCI and NC in a single model framework. This will aid in determining
additional illness severity levels as compared to the binary level of classification in some
of the previous methods [33]. The proposed multiclass classification of various stages
of Alzheimer’s disease outperformed the competitor approaches. Comparison with the
state-of-the-art approaches is based on the ADNI, OASIS, and Kaggle datasets. The overall
performance is shown in Table 2, where we demonstrate the effectiveness of the system in
terms of various evaluation metrics. Our PMCAD-Net achieves a superior numeric score.

The performance is further elaborated in the form of box plots, as shown in Figure 4.
In this figure, the average analysis and individual analysis are explicitly shown to illus-
trate the performance of our method. The generalized comparison with other competitor
methods, including the CNN-3D model [40], 3D-CNN-PAD [38], NIBR-Net [29], DSMAD-
Net [30], DLMCC-Net [31], SCNN [28], and TLEDA-Net [33] is also shown in Table 3.
The generalized comparison of the performance is based on F1-score, accuracy, recall (i.e.,
sensitivity), and positive prediction (i.e., precision) metrics, which are shown in Table 4.
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Our method achieves an F1 score of 96.34, an accuracy of 99.2, a recall rate of 96.3, and a
precision value of 96.4. The comparison with other methods demonstrates the superiority
of the proposed framework.

The overall analysis in terms of performance evaluation metrics demonstrates that
the proposed PMCAD-Net outperformed the extant methods. The general architecture
allows the users to train it on their own dataset to obtain the desired results. In this case,
we train the network for four classes (i.e., NC, EMCI, LMCI, AD); however, it is suitable
for more than four classes. If the number of stages increases, such as the addition of the
significant memory concern (SMC) and mild cognitive impairment (MCI) classes, this
will raise the complexity of classification to 6 classes (i.e., NC, EMCI, LMCI, MCI, SMC,
and AD). However, the proposed network can also handle these classes if it is trained on
these six classes without any significant modification in the network architecture. Our
PMCAD-Net is simple yet effective and has a clear advantage over the extant binary-
class and multiclass classification approaches. This work’s overall comparison for multi-
modalities demonstrates that our method outperformed the competitor approaches in
terms of F1-score, accuracy, specificity, sensitivity, and precision metrics. The improvement
demonstrates that our method represents a promising performance for detecting various
stages of the AD.

5. Conclusions

In this work, a practical multiclass classification network for the diagnosis of Alzheimer’s
disease (PMCAD-Net) is proposed to predict various stages of AD. A generalized frame-
work is proposed to distinguish NC, EMCI, LMCI, and AD. In the proposed framework,
we utilize the MRI volumes from the ADNI database and pre-process them to obtain the
2D images. The data-insufficiency problems are handled using the data augmentation
approach, which improves the proposed network’s robustness, overall performance, and ac-
curacy. The proposed network can handle the various stages of AD and can be extended to
several intermediate stages if required. The overall comparison with the state-of-the-art
approaches demonstrates that the proposed method outperformed the others. The findings
of this study demonstrate that deep learning-based approaches can contribute significantly
to the detection of neurodegenerative disorders. Clinical imaging combined with deep
learning algorithms can help to diminish the risk factors and prognostic indicators as well
as understand the patterns of functional changes in the brain linked with the progression
of Alzheimer’s disease.
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